
Learning Conditional Error Model for Simulated Time-Series Data

Ashish Shrivastava

Apple Inc

ashish.s@apple.com

Oncel Tuzel

Apple Inc

otuzel@apple.com

Abstract

Applications such as autonomous navigation [1], human-

robot interaction [2], game-playing robots [8], etc., use sim-

ulation to minimize the cost of testing in real world. Further-

more, some machine learning algorithms, like reinforcement

learning, use simulation for training a model. To test reli-

ably in simulation or deploy a model in the real world that

is trained with simulated data, the simulator should be rep-

resentative of the real environment. Usually, the simulator is

based on manually designed rules and ignores the stochastic

behavior of measurements. In particular, we would like to

learn a model that captures uncertainties of the sensing al-

gorithms (e.g. neural networks used to detect objects) in real

world and add them in simulation. We model the distribution

of residuals between the ground truth states of the objects

and their perceived states by the sensing algorithm. This

error distribution depends both on the current state of the

object (e.g. distance from the sensor) and its past residuals.

We assume the error distribution is conditionally Gaussian,

and we use a deep neural neural network (DNN) to map the

object states and past residuals to the distribution parame-

ters (mean and variance). Our conditional model perturbs

the dynamic objects’ states (position, velocities, orientations,

and shape) and produces smoother trajectories which look

similar to the real data.

1. Introduction

An algorithm usually requires a thorough evaluation be-

fore it is deployed in a real world environment. The com-

prehensive evaluation of the algorithm becomes challenging

as the complexity of the environment grows, often because

testing becomes prohibitively slow. In such cases, to reduce

the cost and the time, simulation is used to augment real

world testing and has become an important component in the

development of complex algorithms [9, 10, 3, 14, 12, 5, 4].

For example, an autonomous navigation algorithm is tested

in simulation to quickly prototype and thoroughly evaluate

performance before testing in the real world. Furthermore,

simulators can be used to generate data to train machine

learning (ML) models [13]. Some ML algorithms (e.g. rein-

forcement learning) use simulation to learn a policy that can

be used in the real world [15]. For these models to generalize

well in the real world, the simulator needs to be realistic and

should model the stochasticity of the real environments.

Simulators are usually designed with hand-crafted rules

and ignore the stochastic behavior of the real world environ-

ment. In a robot navigation application, a simulator consists

of dynamic and static objects, where the dynamic objects

are sensed without consideration of measurement error and

they move in a deterministic manner. For instance, dynamic

objects move in a straight line and have fixed pose and shape.

This rule-based design ignores measurement error from the

sensors and may fail to capture scenarios the robot encoun-

ters in the real world.

One way to model the measurement error would be to use

an independent and identically distributed (i.i.d.) model such

as a Gaussian Mixture Model (GMM). However, for many

applications, the i.i.d. assumption does not hold because the

measurement error often depends on the state of the world.

For example, objects that are far from the robot may have

larger error due to sensor limitations. The error in the sensing

module of an autonomous system can depend on how fast the

vehicles are moving, the distance between the autonomous

agent and other vehicles, their relative orientations, etc. Such

errors cannot be modeled by an i.i.d. GMM. Furthermore,

the i.i.d. model does not consider the time correlation of the

errors for time-series data and results in jittery predictions

across time.

In this work, we learn a conditional model that perturbs

the perceived states of dynamic objects in a simulator to

model the uncertainties of the sensor measurements (Fig-

ure 1). Unlike previous work on uncertainty estimation

(such as [6, 11]), we model the uncertainty of a time series

data to improve the realism of a simulator.

2. Conditional Error Model

We model the measurement error with a conditional Gaus-

sian distribution whose mean and variance depend on fea-

tures that describe the state of the environment. In addition,

to learn the correlation of errors across time, we also con-

1 91



Conditional 

Model


(DNN)
Simulator 

Example Real

Figure 1: Overview of the system using the proposed conditional error model. We train a DNN model that outputs an error

distribution for each state of the object, conditioned on the state of the world in the simulator. We sample error from the

predicted distribution and add it to the object’s state to make the simulator more realistic.

dition the error distribution on previous error samples. To

estimate the error distribution, we use a Deep Neural Net-

work (DNN) that takes a feature vector that describes the

state of the world and the previous sample of the error as

inputs and outputs mean and variance of the error distribu-

tion (Figure 2a). We sample from this distribution and add

it to the current state of the object in the simulator to im-

prove its realism. We learn this distribution using pairs of

the ground truth states of objects, ŝt, and the correspond-

ing measurements from the sensing algorithms, st, where

t is the time index. We denote the errors by r̂t , st − ŝt.

For each sample ŝt, we compute a feature vector xt which

may include properties of the environment (e.g. local map)

in addition to the object states. We parameterize the Gaus-

sian distribution with mean µθ(xt) and standard deviation

σθ(xt). Here θ are the parameters of the DNN (Figure 2a).

The log likelihood L(θ) of the error samples is given by:

L(θ;xt, r̂t) =
∑

t

(µθ(xt)− r̂t)
2σθ(xt)

−2

+ 2 logσθ(xt) + const.

To learn the correlation across time, we also input

the previous error sample rt−1 to the DNN. With slight

abuse of notation, the likelihood function can be written as

L(θ;xt, r̂t, rt−1). Here rt is a sample from the predicted

error model: rt ∼ N (µ
t
,σt) while r̂t’s are the training data

(error samples). To model the likelihood of the sequence,

the following multi-step prediction problem can be solved:

min
θ

L(θ;xt, r̂t, rt−1) + L(θ;xt+1, r̂t+1, rt)

+...+ L(θ;xt+T ,r̂t+T , rt+T−1), (1)

where T is the time horizon. Traditional sequence modeling

methods (e.g. Wavenet [16]) model the sequence likelihood

with a “teacher enforcing” approach during training, where

the ground-truth output at time t − 1 is fed as an input at

time t. However, in our case, we found the teacher enforc-

ing to overfit the training data and caused the objects to

drift at inference time. Using the predicted samples as in-

put requires sampling from the predicted model which is

(a) DNN model (b) Quantitative comparison

Figure 2: (a) The inputs to DNN model are the features

xt and the previous error samples rt−1. (b) Quantitative

comparison of the conditional model with Gaussian baseline

on a held-out test data. The likelihood of the i.i.d. Gaussian

model is smaller because it cannot model the conditional

nature of the error, nor correlation across time.

a non-differentiable operation. To avoid this problem, we

use a well known re-parameterization trick of variational au-

toencoders [7] where, to compute rt, we sample from a zero

mean and unit variance Gaussian, then scale by σt and add

µ
t
. Our model is a simple form of recurrent neural network

(RNN) where we map the previous sampled error (rt−1) and

the feature vector encoding the object and environment (xt)

to error distribution parameters via three fully connected lay-

ers. Then we sample from the error distribution and repeat

the process in the next time instance.

At inference time, we predict one sample at a time with a

forward pass through the network.

3. Experiments

We apply the proposed approach to model the sensing

measurement errors in a robot navigation application. The

states of the objects in the environment are positions (x,

y), velocities (vx, vy), orientations (yaw), and the shape

(length, width, height). To obtain the ground truth data, we

instrument the objects in the real world with high precision

location sensors. Our training data consists of the residual

between the measured values with the sensing module and

the ground-truth from the high precision sensor. We train

92



(a) example error distribution (b) sampled error distribution from the learned model

Figure 3: Example of the conditional measurement error in the position (along the x-axis) of the objects perceived by the

robot as a function of the location of the object (a). This example demonstrates that the error in data in truly conditional and is

modeled by our conditional model in (b).

(a) i.i.d. GMM model (b) proposed conditional model (c) example real frame

Figure 4: Qualitative comaprison of GMM (a) and the proposed conditional model (b) where we model the measurement error

for the pose and velocities of the objects in the environment. In the real data (c), although the error is large, the trajectories are

smooth because the error is correlated. The i.i.d. fails to model the correlation, producing a jittery trajectory. As we can see,

qualitatively the conditional model is closer to the real data (trajectory is smoother despite the amount of error being large).

The object in the bottom left corner is made smaller because the shape error of the object increases with distance from the

sensor (shown in white) which is also the case for the real data.

the DNN by minimizing the loss in (1) using the RMSprop

optimizer for 10000 steps with initial learning rate of 0.01
that was decayed by a factor of 0.9 after every 500 steps.

We compute log likelihood, which quantifies how well the

model explains the errors (on a held-out dataset) using the

trained model. This measure takes into account both the

prediction error as well as the uncertainty. As a baseline

to compare our results against, we use an i.i.d. Gaussian

model with a fixed mean and standard deviation computed

from the training data. As can be seen from Figure 2b,

our conditional model outperforms the Gaussian model for

all the modeled states. To visualize the conditional nature

of the errors, we plot errors as a function of location of

the objects from the sensor in Figure 3. Although the error

depends on many features, to illustrate the conditional nature

of the error we plot the error in x-direction as a function of

the object locations. To obtain these errors, we moved an

object with a high-precision sensor around the robot that

sensed the position of the object with the sensing module.

The residual between the sensed position and the ground

truth position is averaged at each location. As we can see

in Figure 3, the error depends on the object’s location and

our model is able to capture the conditional nature of the

error. We also qualitatively verify our results in Figure 4

by observing that the i.i.d. fails to model the correlation,

producing a jittery trajectory. Conversely, the conditional

model is closer to the real data (trajectory is smoother despite

the error being large). These results show that the proposed

method produces smooth trajectories similar to the real data,

models the conditional nature of the measurement errors,

and outperforms the baseline.

93



References

[1] DARPA grand challenge. http://archive.darpa.

mil/grandchallenge/, 2004. 1

[2] Kerstin Dautenhahn. Socially intelligent robots: dimensions

of human–robot interaction. Philosophical Transactions of

the Royal Society of London B: Biological Sciences, 2007. 1

[3] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan.

Modular open robots simulation engine: MORSE. In IEEE

International Conference on Robotics and Automation, 2011.

1

[4] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora

Vig. Virtual worlds as proxy for multi-object tracking analysis.

arXiv preprint arXiv:1605.06457, 2016. 1

[5] Serena Ivaldi, Vincent Padois, and Francesco Nori. Tools

for dynamics simulation of robots: a survey based on user

feedback. arXiv preprint arXiv:1402.7050, 2014. 1

[6] Alex Kendall and Yarin Gal. What uncertainties do we need

in bayesian deep learning for computer vision? Proc. NIPS,

2017. 1

[7] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional bayes. In Proc. ICLR, 2014. 2

[8] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda,

and Eiichi Osawa. RoboCup: The robot world cup initiative.

In Proceedings of the First International Conference on Au-

tonomous Agents, 1997. 1

[9] Leon lajpah. Simulation in robotics. Math. Comput. Simul.,

2008. 1

[10] Beatriz León, Stefan Ulbrich, Rosen Diankov, Gustavo Puche,

Markus Przybylski, Antonio Morales, Tamim Asfour, Sami

Moisio, Jeannette Bohg, James Kuffner, and Rüdiger Dill-

mann. OpenGRASP: A toolkit for robot grasping simulation.

In Simulation, Modeling, and Programming for Autonomous

Robots, 2010. 1

[11] David A Nix and Andreas S Weigend. Estimating the mean

and variance of the target probability distribution. IEEE

International Conference On Neural Networks, 1994. 1

[12] E. Rohmer, S. P. N. Singh, and M. Freese. V-REP: A versa-

tile and scalable robot simulation framework. In IEEE/RSJ

International Conference on Intelligent Robots and Systems,

2013. 1

[13] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh

Susskind, Wenda Wang, and Russell Webb. Learning from

simulated and unsupervised images through adversarial train-

ing. CVPR, 2017. 1

[14] Aaron Staranowicz and Gian Luca Mariottini. A survey and

comparison of commercial and open-source robotic simulator

software. In Proceedings of the 4th International Conference

on Pervasive Technologies Related to Assistive Environments,

2011. 1

[15] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei

Bai, Danijar Hafner, Steven Bohez, and Vincent Vanhoucke.

Sim-to-real: Learning agile locomotion for quadruped robots.

http://arxiv.org/abs/1804.10332, 2018. 1

[16] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen

Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,

Andrew W. Senior, and Koray Kavukcuoglu. Wavenet: A gen-

erative model for raw audio. http://arxiv.org/abs/1609.03499,

2016. 2

94


